Классическое определение вероятности случайного события. Как найти вероятность события


формулы и примеры решения задач :: SYL.ru

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности – это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1: Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А1В1С1.

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А1ВС1υ АВ1С1 υ А1В1С.

А1ВС1 – это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события – это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

Р обозначает вероятность события А.

А – собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А1.

m – количество возможных благоприятных случаев.

n – все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить Wn(A). Формула ничем не отличается от классической:

Wn(A)=m/n.

Если классическая формула вычисляется для прогнозирования, то статистическая – согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

Wn(A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт – это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m – элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

Anm=n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Рn = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

Anm=n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

Pn(m)=Cnm×pm×qn-m.

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

q=1-p

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица – это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q – число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P6(0)=C06×p0×q6=q6=(0,8)6=0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

Cnm=n!/m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P6(2)=C62×p2×q4 = (6×5×4×3×2×1)/(2×1×4×3×2×1)×(0,2)2×(0,8)4=15×0,04×0,4096=0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

Pn(m)=λm/m!×e(-λ).

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3: На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р100000(5) = 105/5! Х е-10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е-λ= lim n->∞(1-λ/n)n.

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Рn(m)= 1/√npq x ϕ(Xm).

Xm = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Задание 4: Рекламный агент раздает 800 листовок. Согласно статистическим исследованиям, каждая третья листовка находит своего потребителя. Какова вероятность того, что сработает ровно 267 рекламных листовок?

n = 800;

m = 267;

p = 1/3;

q = 2/3.

Сначала найдем Xm, подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р800(267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) – условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) – условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5: На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором – 60%, на третьем – 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй – 4%, и у третьей – 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В1 – телефон, который изготовила первая фабрика. Соответственно, появятся вводные В2 и В3 (для второй и третьей фабрик).

В итоге получим:

Р (В1) = 25%/100% = 0,25; Р(В2) = 0,6; Р (В3) = 0,15 – таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В1) = 2%/100% = 0,02;

Р(А/В2) = 0,04;

Р (А/В3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

www.syl.ru

Классическое определение вероятности случайного события

Под вероятностью случайного события в математике понимают меру возможности осуществления данного события в конкретных условиях эксперимента (испытания).

Рассмотрим некоторую конечную полную группу равновоз-можных элементарных событий (исходов) В,, В2, ..., Вп, т. е. со­вокупность всех единственно возможных, несовместных и вместе с тем равновозможных результатов некоторого испытания, при­чем пусть интересующее нас случайное событие А осуществляет­ся тогда и только тогда, когда наступают некоторые из элемен­тарных событий указанной полной группы. Пусть таких событий, благоприятствующих для события А, насчитывается т (естественно, т<п). Тогда вероятность события А определяют следующим образом:

Определение. Вероятностью Р(А) случайного события А называется отношение количества т элементарных событий, благо-приятствующих событию А, к общему количеству элементарных событий п:

P*(A)=m/n

Поскольку в общем случае 0 < т < п, то из этого определения, называемого классическим определением вероятности случайного события, следует, что вероятность произвольного случайного события принадлежит отрезку [0,1], т.е.

0≤ Р(А)≤1

Пример 8.1. Найти вероятность того, что при извлечении наугад одного шара из корзины, в которой находятся 2 белых, 3 зеленых и 5 красных шаров, извлеченный шар окажется зеленым.

Решение. Поскольку общее количество элементарных событий (исходов) для данного испытания образует полную группу из n=10 равновозможных событий (по общему количеству шаров в корзине), из которых только т = 3 элементарных события (по количеству зеленых шаров) являются благоприятствующими для интересующего нас события (обозначим это событие через А), по формуле (8.1) получим:

Р(А)=3/10

Основные свойства вероятности случайного события

1. Вероятность невозможного события равна нулю. Действительно, поскольку количество т элементарных событий, благоприятствующих невозможному событию А, равно нулю, получаем:

Р(А) = 0/п=0

2. Вероятность достоверного события равна единице. Действительно, поскольку количество т элементарных событий, благоприятствующих достоверному событию А, равно общему количе­ству п этих элементарных событий, получаем:

Р(А) = п/ п=1

Лекция 1.

Цели, задачи и структура медицинской и биологической физики. Ее место и роль в системе медицинского образования, межпредметные связи с другими медико-биологическими и клиническими дисциплинами.

Вероятностный характер медико-биологических процессов. Элементы теории вероятностей. Вероятность случайного события. Закон сложения и умножения вероятностей.

Принципы вероятностных подходов к задачам диагностики и прогно­зирования заболеваний.

Теория вероятностей

В теории вероятностей исследуются закономерности, относя­щиеся к случайным событиям, величинам, процессам. Врачи редко задумываются, что постановка диагноза имеет вероятно­стный характер и, как остроумно замечено, лишь патологоанатомическое исследование может достоверно определить ди­агноз умершего человека.

§2.1. Случайное событие. Вероятность

Наблюдая различные явления, можно заметить, что существу­ет два типа связей между условиями S и наступлением или ненас­туплением некоторого событияА. В одних случаях осуществление комплекса условийS(испытание) непременно вызывает событиеА. Так, например, материальная точка массойт0 под воздействи­ем силы F (условие S) приобретает ускорение а = F/m0 (событие А). В других случаях многократное повторение испытания можетпривести или не привести к появлению события А. Такие события принято называть случайными: к ним можно отнести появление в кабинете врача больного с данной болезнью, выпадение опреде­ленной стороны монеты при ее бросании и др.

Не следует думать о случайных явлениях как о беспричинных, ничем не обусловленных. Известно, что многие явления связаны между собой, отдельное явление представляет следствие како­го-то другого и само служит причиной последующего. Однако проследить количественно эту связь между условиями и событи­ем часто затруднительно или даже невозможно. Так, при броса­нии игральной кости (однородный кубик с пронумерованнымишестью гранями: 1, 2, 3, 4, 5 и 6) окончательное положение куби­ка зависит от движения руки в момент бросания, сопротивления воздуха, положения кубика при попадании на поверхность, осо­бенности поверхности, на которую упал кубик, и других факто­ров, которые в отдельности учесть невозможно.

В быту применительно к таким случайным событиям употреб­ляют слова «возможно», «вероятно», «маловероятно», «невероятно». В некоторых случаях такая оценка больше характеризует желание говорящего, чем истинную степень возможности или не­возможности события. Однако и случайные события, если их чис­ло достаточно велико, подчиняются определенным закономернос­тям. Количественная оценка закономерностей, относящихся к случайным событиям, дается в разделе математики, называемом теорией вероятностей.

Теория вероятностей изучает закономерности, присущие мас­совым (статистическим) случайным событиям.

Отдельные исторические факты, «неожиданности», «катастро­фы» являются единичными, как бы неповторимыми, событиями, и количественные вероятностные суждения относительно них сделать невозможно. Исторически теория вероятностей появи­лась в связи с попытками подсчета возможности различных исхо­дов в азартных играх. В настоящее же время она применяется в науке, в том числе биологии и медицине, для оценки вероятности практически важных событий. От игр остались лишь наглядные примеры, которые удобно использовать для иллюстрации теоре­тических положений.

Статистическое определение вероятности. ВероятностьР(А) в теории вероятностей выступает как числовая характеристика сте­пени возможности появления какого-либо определенного случай­ного события А при многократном повторении испытаний.

Допустим, при 1000 бросаний игральной кости цифра 4 выпа­дает 160 раз. Отношение 160/1000 = 0,16 показывает относитель­ную частоту выпадания цифры 4 в данной серии испытаний. В бо­лее общем случае, когда случайное событие А происходитт раз в сериип независимых испытаний,относительной частотой со­бытия в данной серии испытаний или просто частотой события А называют отношение

(2.1)

При большом числе испытаний частота события примерно по­стоянна: увеличение числа испытаний уменьшает колебание час­тоты события около постоянной величины.

Вероятностью случайного события назовем предел, к ко­торому стремится частота события при неограниченном увеличении числа испытаний:

(2.2)

Естественно, что никто и никогда не сможет проделать неогра­ниченное число испытаний для того, чтобы определить вероят­ность. В этом нет и надобности. Практически за вероятность [см. (2.2)] можно принять относительную частоту события при боль­шом числе испытаний. Так, например, из статистических законо­мерностей рождения, установленных за много лет наблюдений, вероятность того события, что новорожденный будет мальчиком, оценивают в 0,515.

Классическое определение вероятности. Если при испыта­ниях нет каких-либо причин, вследствие которых одно случайноесобытие появлялось бы чаще других (равновозможные собы­тия), можно определить вероятность исходя из теоретических со­ображений. Например, выясним в случае бросания монеты часто­ту выпадания герба (событиеА). Разными экспериментаторамипри нескольких тысячах испытаний было показано, что относи­тельная частота такого события принимает значения, близкие к0,5. Учитывая, что появление герба и противоположной стороны монеты (событие В) являются событиями равновозможными, ес­ли монета симметрична, суждение Р(А) = Р(В) = 0,5 можно было бы сделать и без определения частоты этих событий. На основе по­нятия «равновозможности» событий формулируется другое опре­деление вероятности.

Допустим, что в результате испытания должно произойти только одно изп равновозможных несовместных событий(несов­местными называют события, если их одновременное осуществ­ление невозможно). Пусть рассматриваемое событие А происхо­дит вт случаях, которые называются благоприятствующими А, ине происходит при остальных п - т, неблагоприятствующих А. Тогдавероятностью можно назвать отношение благоприят­ствующих случаев к общему числу равновозможных несов­местных событий:

Р(А) = m/n . (2.3)

Это классическое определение вероятности.

Рассмотрим не­сколько примеров.

1. В урне находится 40 шаров: 10 черных и 30 белых. Найти вероят­ность того, что вынутый наугад один шар будет черным.

Число благоприятствующих случаев равно числу черных шаров в урне: т = 10. Общее число равновозможных событий (вынимание одного шара) равно полному числу шаров в урне: п = 40. Эти события несовмест­ны, так как вынимается один и только один шар. По формуле (2.3) имеем:

Р(А) = 10/40 = 1/4.

2. Найти вероятность выпадания четного числа при бросании играль­ной кости.

При бросании кости реализуются шесть равновозможных несов­местных событий: появление одной цифры 1, 2, 3, 4, 5 или 6, т. е. п = 6.Благоприятствующими случаями являются выпадания одной из цифр 2, 4 или 6: т = 3. Искомая вероятность:

Р(А) = m/n – 3/6 = 1/2.

Как видно из определений вероятности события (2.2) и (2.3), для всех событий 0  Р(А)  1.

События, которые при данных испытаниях не могут про­изойти, называются невозможными: их вероятность равна нулю.

Так, например, невозможно из урны с белыми и черными ша­рами вытащить красный шар, невозможно на игральной кости получить цифру 7.

Событие, которое при данном испытании обязательно произойдет, называется достоверным, его вероятность рав­на 1.

Примером достоверного события является извлечение белого шара из урны, в которой находятся только белые шары.

В ряде случаев вычислить вероятность события оказывается проще, если представить его в виде комбинации более простых со­бытий. Этой цели служат некоторые теоремы теории вероятнос­тей.

Теорема сложения вероятностей: вероятность появления одного (безразлично какого) события из нескольких несов­местных событий равна сумме их вероятностей. Для двух несовместных событий

Р(А илиВ) = Р(А) + Р(В).(2.4)

Докажем эту теорему. Пусть п — общее число испытаний, т1 — число случаев, благоприятствующих событию А,т2 — число слу­чаев, благоприятствующих событию В. Число случаев, благопри­ятствующих наступлению либо события А, либо события В, равно m1 +m2. ТогдаР(А илиВ) = (т1 + т2)/п = т1/п + т2/п. Отсюда, учитывая (2.3), имеем

Р(А илиВ) = Р(А) + Р(В).

* Найти вероятность выпадания 1 или 6 при бросании игральной кости.

События А (выпадание 1) иВ (выпадание 6) являются равновозможными: Р(А) = Р(В) = 1/6, поэтому из (2.4) находимР(А илиВ) =1/6 + 1/6 = 1/3.

Сложение вероятностей справедливо не только для двух, но и для любого числа несовместных событий.

* В урне находится 50 шаров: 10 белых, 20 черных, 5 красных и 15 си­них. Найти вероятность появления белого, или черного, или красного шара при однократной операции изъятия шара из урны.

Вероятность вынимания белого шара (событие А) равна Р(А) = 10/50 = 1/5, черного шара (событие В) — Р(В) = 20/50 = 2/5 и крас­ного (событие С) — Р(С) = 5/50 = 1/10. Отсюда по формуле сложения ве­роятностей получим Р(А или В или С) = Р(А) + Р(В) + Р(С) = 1/5 + 2/5 + + 1/10= 7/10.

Если два события единственно возможны и несовместны, то их называют противоположными.

Такие события принято обозначать, например, А и .

Сумма вероятностей двух противоположных событий, как следует из теоремы сложения вероятностей, равна еди­нице:

(2.5)

*Проиллюстрируем справедливость (2.5) на предыдущем примере. Пусть вынимание белого, или черного, или красного шара будет событи­емА1 , Р(А1) = 7/10.Противоположным событиемявляется доставание синего шара. Так как синих шаров 15, а общее количество шаров 50, то получаемР() = 15/50 = 3/10 иР(А1) + Р() = 7/10 + 3/10 = = 1.

*В урне находятся белые, черные и красные шары. Вероятность доставания черного или красного шара равна 0,4. Найти вероятность доставания из урны белого шара.

Обозначим А событие вынимания черного или красного шара, Р(А) = 0,4; противоположным событием будет изъятие белого ша­ра, тогда на основании (2.5) вероятность этого события Р() = 1 - Р(А) = = 1 - 0,4 = 0,6.

Систему событий (А1, А2, ... Ak) называют полной, если при испытаниях наступит одно и только одно из этих собы­тий. Сумма вероятностей событий, образующих полную сис­тему, равна единице.

* В урне имеется 40 шаров: 20 белых, 15 черных и 5 красных. Вероят­ность появления белого шара (событие А) равна Р(А) = 20/40 = 1/2, для черного шара (событие В) — Р(В) = 15/40 = 3/8 и для красного шара (со­бытиеС) — Р(С) = 5/40 = 1/8. В этом случае система событийА1, А2, А3 является полной; можно убедиться, что Р(А) + Р(В) + Р(С) = 1/2 + 3/8 + + 1/8 = 1.

Теорема умножения вероятностей: вероятность совместно­го появления независимых событий равна произведению их вероятностей. Для двух событий

Р(А и В) = Р(А) • Р(В). (2.6)

Докажем эту теорему. Так как события А и В независимы, то каждому из т1 случаев, благоприятствующих А, соответствуют т2 случаев, благоприятствующих В. Таким образом, общее число случаев, благоприятствующих совместному появлению событий А и В, равно т1 т2. Аналогично, общее число равновозможных собы­тий равно п1 п2, где п1 и п2 — числа равновозможных событий со­ответственно для А и В. Имеем

(2.7)

* В одной урне находится 5 черных и 10 белых шаров, в другой 3 чер­ных и 17 белых. Найти вероятность того, что при первом вынимании ша­ров из каждой урны оба шара окажутся:

1) черными; 2) белыми; 3) в пер­вой урне будет вынут черный шар, а во второй — белый; 4) в первой урне будет вынут белый шар, а во второй — черный.

Вероятность вытаскивания черного шара из первой урны (событие А)равна Р(А) =

= 5/15 = 1/3, черного шара из второй урны (событие В) — Р(В) = 3/20, белого шара из первой урны (событие А') — Р(А') = 10/15 = 2/3 и белого шара из первой урны (событиеВ') —Р(В') = 17/20. Нахо­дим вероятность совместного появления двух независимых событий по формуле (2.6):

1) Р(А и В) = Р(А) • Р(В) = (1/3) (3/20) = 3/60 — оба шара черные;

2) Р(А' и В') = Р(А') • Р(В') = (2/3) (17/20) = 17/30 — оба шара белые;

3) Р(А' и В') = Р(А) • Р(В') = (1/3) (17/20)= 17/60 — в первой урне бу­дет вынут черный шар, а во второй — белый;

4) Р(А' и В) = Р(А') • Р(В) = (2/3) (3/20) = 1/10 — в первой урне будет вынут белый шар, а во второй — черный.

Все четыре возможных случая А и В, А' и В', А и В', А' и В образуют полную систему событий, поэтому

Р(А и В) + Р(А' и В') + Р(А и В') + Р(А' и В)= 3/60 + 17/30 + 17/60 + 1/10 = 1.

* Найти вероятность того, что в семье с тремя детьми все трое сыновья. Считать, что вероятность рождения мальчика равна 0,515 и по каждого последующего ребенка не зависит от пола предыдущих детей.

По теореме умножения вероятностей, Р(А и В иС) = 0,515• 0,515 • 0,515  0,14.

Теорема умножения вероятностей усложняется, если оп­ределяется вероятность события, состоящего из совместно­го появления двух зависимых между собой событий. В том случае, когда событие В выполняется при условии, что собы­тие А имело место, вероятность совместного появления двух этих событий равна

Р(А и В) = Р(А) • Р(В/А), (2.8)

где Р(В/А) —условная вероятность, т. е. вероятность событияВ при условии, что событиеА состоялось.

* В урне 5 шаров: 3 белых и 2 черных. Найти вероятность того, что по­следовательно один за другим будут вынуты черный и белый шары.

Вероятность того, что первым будет изъят черный шар (событие А),равна Р(А) = т/п = 2/5. После удаления черного шара в урне остается 4 шара: 3 белых и 1 черный. В этом случае вероятность вынимания белогошара (событие В после выполнения события А) равна Р(В/А) = 3/4. Ис­пользуя (2.8), получаем

Р(А и В) = (2/5) • (3/4) = 3/10.

studfiles.net

Долой неопределенность, или Как найти вероятность

как найти вероятностьНравится нам это или нет, но наша жизнь полна всевозможных случайностей, как приятных так и не очень. Поэтому каждому из нас не помешало бы знать, как найти вероятность того или иного события. Это поможет принимать верные решения при любых обстоятельствах, которые связаны с неопределенностью. К примеру, такие знания окажутся весьма кстати при выборе вариантов инвестирования, оценке возможности выигрыша в акции или лотерее, определении реальности достижения личных целей и т. д., и т. п.

Формула теории вероятности

В принципе, изучение данной темы не занимает слишком много времени. Для того чтобы получить ответ на вопрос: "Как найти вероятность какого-либо явления?", нужно разобраться с ключевыми понятиями и запомнить основные принципы, на которых базируется расчёт. Итак, согласно статистике, исследуемые события обозначаются через A1, А2,..., An. У каждого из них есть как благоприятствующие исходы (m), так и общее количество элементарных исходов. К примеру, нас интересует, как найти вероятность того, что на верхней грани кубика окажется четное число очков. Тогда А – это бросок игральной кости, m – выпадение 2, 4 или 6 очков (три благоприятствующих варианта), а n – это все шесть возможных вариантов. формула теории вероятностиСама же формула расчета выглядит следующим образом:

Р(А) = m / n.

Легко подсчитать, что в нашем примере искомая вероятность равна 1/3. Чем ближе результат к единице, тем больше шансов того, что такое событие случится на самом деле, и наоборот. Вот такая вот теория вероятности.

Примеры

С одним исходом все предельно легко. А вот как найти вероятность, если события идут одно за другим? Рассмотрим такой пример: из карточной колоды (36 шт.) показывается одна карта, затем она прячется снова в колоду, и после перемешивания вытаскивается следующая. Как найти вероятность того, что хоть в одном случае была вытащена дама пик? Существует следующее правило: если рассматривается сложное событие, которое можно разделить на несколько несовместимых простых событий, то можно сначала рассчитать результат для каждого из них, а затем сложить их между собой. В нашем случае это будет выглядеть так: 1/36+ 1/36 = 1/18. А как же быть тогда, когда несколько независимых событий происходят одновременно? Тогда результаты умножаем! Например, вероятность того, что при одновременном подбрасывании сразу двух монет выпадут две решки, будет равна: ½ * ½ = 0.25. теория вероятности примеры

Теперь возьмем еще более сложный пример. Предположим, мы попали на книжную лотерею, в которой из тридцати билетов десять являются выигрышными. Требуется определить:

  1. Вероятность того, что оба окажутся выигрышными.
  2. Хотя бы один из них принесет приз.
  3. Оба окажутся проигрышными.

Итак, рассмотрим первый случай. Его можно разбить на два события: первый билет будет счастливым, и второй также окажется счастливым. Учтем, что события зависимы, поскольку после каждого вытаскивания общее количество вариантов уменьшается. Получаем:

10/30 * 9/29 = 0,1034.

Во втором случае понадобится определить вероятность проигрышного билета и учесть, что он может быть как первым по счету, так и вторым: 10/30 * 20/29 + 20/29 *10/30 = 0,4598.

Наконец, третий случай, когда по разыгранной лотерее даже одной книжки получить не получится: 20/30 * 19/29 = 0,4368.

fb.ru

Как решать задачи на вероятность?

Теория вероятности – довольно обширный самостоятельный раздел математики. В школьном курсе теория вероятности рассматривается очень поверхностно, однако в ЕГЭ и ГИА имеются задачи на данную тему. Впрочем, решать задачи школьного курса не так уж сложно (по крайней мере то, что касается арифметических операций) – здесь не нужно считать производные, брать интегралы и решать сложные тригонометрические преобразования – главное, уметь обращаться с простыми числами и дробями.

Теория вероятности – основные термины

Главные термины теории вероятности – испытание, исход и случайное событие. Испытанием в теории вероятности называют эксперимент – подбросить монету, вытянуть карту, провести жеребьевку – все это испытания. Результат испытания, как вы уже догадались, называется исходом.

А что же такое случайность события? В теории вероятности предполагается, что испытание проводится ни один раз и исходов много. Случайным событием называют множество исходов испытания. Например, если вы бросаете монету, может произойти два случайных события – выпадет орел или решка.

Не путайте понятия исход и случайное событие. Исход – это один результат одного испытания. Случайное событие – это множество возможных исходов. Существует, кстати, и такой термин, как невозможное событие. Например, событие "выпало число 8" на стандартном игровом кубике является невозможным.

Как найти вероятность?

Все мы примерно понимаем, что такое вероятность, и довольно часто используем данное слово в своем лексиконе. Кроме того, мы можем даже делать некоторые выводы относительно вероятности того или иного события, например, если за окном снег, мы с большой вероятностью можем сказать, что сейчас не лето. Однако как выразить данное предположение численно?

Для того чтобы ввести формулу для нахождения вероятности, введем еще одно понятие – благоприятные исход, т. е. исход, который является благоприятным для того или иного события. Определение довольно двусмысленное, конечно, однако по условию задачи всегда понятно, какой из исходов благоприятный.

Например: В классе 25 человек, трое из них Кати. Учитель назначает дежурной Олю, и ей нужен напарник. Какова вероятность того, что напарником станет Катя?

В данном примере благоприятный исход – напарник Катя. Чуть позже мы решим эту задачу. Но сначала введем с помощью дополнительного определения формулу для нахождения вероятности.

  • Р = А/N, где P – вероятность, A – число благоприятных исходов, N – общее количество исходов.

Все школьные задачи крутятся вокруг о

elhow.ru

Вероятность случайного события и классическое определение вероятности

Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события. Вероятностью случайного события называется число, являющееся выражением меры объективной возможности появления события.

Величины, определяющие, насколько значительны объективные основания рассчитывать на появление события, характеризуются вероятностью события. Необходимо подчеркнуть, что вероятность есть объективная величина, существующая независимо от познающего и обусловленная всей совокупностью условий, которые способствуют появлению события.

Объяснения, которые мы дали понятию вероятности, не являются математическим определением, так как они не определяют это понятие количественно. Существует несколько определений вероятности случайного события, которые широко применяются при решении конкретных задач (классическое, аксиоматическое, статистическое и т. д.).

Классическое определение вероятности события сводит это понятие к более элементарному понятию равновозможных событий, которое уже не подлежит определению и предполагается интуитивно ясным. Например, если игральная кость - однородный куб, то выпадения любой из граней этого куба будут равновозможными событиями.

Пусть достоверное событие  распадается на  равновозможных случаев , сумма  которых дает событие . То есть случаи из , на которые распадается , называются благоприятствующими для события , так как появление одного из них обеспечивает наступление .

Вероятность события  будем обозначать символом .

Вероятность события  равна отношению числа случаев , благоприятствующих ему, из общего числа  единственно возможных, равновозможных и несовместных случаев к числу , т. е.

Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число n, число случаев m, благоприятствующих данному событию, и затем выполнить расчет по вышеприведенной формуле.

Вероятность события, равная отношению числа благоприятных событию исходов опыта к общему числу исходов опыта называется классической вероятностью случайного события.

Из определения вытекают следующие свойства вероятности:

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Свойство 4. Вероятность наступления событий, образующих полную группу, равна единице.

Свойство 5. Вероятность наступления противоположного события  определяется так же, как и вероятность наступления события A.

 - число случаев, благоприятствующих появлению противоположного события  . Отсюда вероятность наступления противоположного события  равна разнице между единицей и вероятностью наступления события A:

Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

При выполнении комплекса условий достоверное событие обязательно произойдет, а невозможное обязательно не произойдет. Среди событий, которые при создании комплекса условий могут произойти, а могут не произойти, на появление одних можно рассчитывать с большим основанием, на появление других с меньшим основанием. Если, например, в урне белых шаров больше, чем черных, то надеяться на появление белого шара при вынимании из урны наудачу больше оснований, чем на появление черного шара.

Пример 1

В ящике находится 8 белых, 4 черных и 7 красных шаров. Наудачу извлечены 3 шара. Найти вероятности следующих событий:  – извлечен по крайней мере 1 красный шар,  – есть по крайней мере 2 шара одного цвета,  – есть по крайней мере 1 красный и 1 белый шар.

Испытываете сложности с пониманием хода решения? На сайте действует услуга Решение задач по теории вероятностей на заказ

Решение задачи

Общее число исходов испытания:

 

Найдем вероятность события  – извлечен по крайней мере 1 красный шар (1,2 или 3 красных шара)

Число исходов, благоприятствующих событию:

Искомая вероятность:

 

Пусть событие  – есть по крайней мере 2 шара одного цвета (2 или 3 белых шара, 2 или 3 черных шара и 2 или 3 красных шара)

Число исходов, благоприятствующих событию:

Искомая вероятность:

 

Пусть событие  – есть по крайней мере один красный и 1 белый шар

(1 красный, 1 белый, 1 черный или 1 красный, 2 белых или 2 красных, 1 белый)

Число исходов, благоприятствующих событию:

Искомая вероятность:

 

Ответ: P(A)=0.773;P(C)=0.7688;  P(D)=0.6068

Пример 2

Брошены две игральные кости. Найти вероятность того, что сумма очков не меньше 5.

Решение

Пусть событие  – сумма очков не меньше 5

Воспользуемся классическим определением вероятности:

 -общее число возможных исходов испытания

 -число испытаний, благоприятствующих интересующему нас событию

На выпавшей грани первого игрального кубика может появиться одно очко, два очка…, шесть очков. аналогично шесть исходов возможны при бросании второго кубика. Каждый из исходов бросания первой кости может сочетаться с каждым из исходов второй. Таким образом, общее число возможных элементарных исходов испытания равно:

Найдем вероятность противоположного события  – сумма очков меньше 5

Благоприятствовать событию  будут следующие сочетания выпавших очков:

1-я кость 2-я кость
1 1 1
2 1 2
3 2 1
4 3 1
5 1 3

Ответ: p=0.8611

100task.ru

Случайные события. Вероятность события. Примеры решения задач

Случайные события. Вероятность события

Классическое определение вероятностиВероятностью события А Р(A) называется отношение числа благоприятствующих этому событию исходов m к общему числу всех единственно возможных и равновозможных элементарных исходов n, Р(A)=.

Задача1

Из 20 экзаменационных билетов 3 содержат простые вопросы. Пять студентов по очереди берут билеты. Найти вероятность того, что хотя бы одному из них достанется билет с простыми вопросами.

Решение:

Для начала найдем вероятность того, что ни одному из студентов не достанется билет с простыми вопросами.Эта вероятность равна

Первая дробь  показывает вероятность того, что первому студенту достался билет со сложными вопросами (их 17 из 20)Вторая дробь  показывает вероятность того, что второму студенту достался билет со сложными вопросами (их  осталось 16 из 19)Третья дробь  показывает вероятность того, что третьему студенту достался билет со сложными вопросами (их осталось 15 из 18)И так далее до пятого студента. Вероятности перемножаются т.к. по условию требуется одновременное выполнение этих условий.

Чтобы получить вероятность того, что хотя бы одному из студентов достанется билет с простыми вопросами надо вычесть полученную выше вероятность из единицы.

Ответ: 0,6009.

Задача2Из множества всех последовательностей длины 10, состоящих из цифр 0; 1; 2; 3, наудачу выбирается одна. Какова вероятность того, что выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности. Решение

Вероятность события A – «Выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности», согласно классическому определению, равна P(A) = , где n – полное число равновероятных исходов; m – число исходов, благоприятствующих событию A.

Число способов заполнить 10 позиций в последовательности цифрами 0; 1; 2; 3 составляет, с учетом возможности повторения цифр, n = 410 = 220 = 1048576.

Число способов разместить 5 нулей на 10 позициях в последовательности при условии, что нули обязательно находятся на первом и десятом месте в последовательности, равно числу способов разместить три нуля на восьми свободных позициях в последовательности и равно числу сочетаний из 8 элементов по 3:  =  = 56.

Оставшиеся 8 – 3 = 5 позиций в последовательности будут заполнены цифрами 1; 2; 3. Число способов осуществить это, с учетом возможности повторения, равно 35 = 243.

Т.о., число исходов, благоприятствующих событию A, равно m = ×35 = 56×243 = 13608.Искомая вероятность события A равна:P(A) =  = 0,013.Ответ: P(A) =  = 0,013.

Задача 3.Имеется 100 одинаковых деталей, среди которых 3 бракованных. Найти вероятность того, что взятая наудачу деталь без брака.

Решение. В этой задаче производится испытание – извлекается одна деталь. Число всех исходов испытания равно 100, т. к. может быть взята любая деталь из 100. Эти исходы несовместны, равновозможны, единственно возможны. Таким образом, Событие - появилась деталь без брака. Всего в партии 97 деталей без брака, следовательно, число исходов, благоприятных появлению события А равно 97 . Итак,  Тогда Задача 4.Код банковского сейфа состоит из 6 цифр. Найти вероятность того, что наудачу выбранный код содержит различные цифры? Решение. Так как на каждом из шести мест в шестизначном шифре может стоять любая из десяти цифр: 0,  1, 2, 3, 4, 5, 6, 7, 8, 9, то всех различных шестизначных номеров по правилу произведения будет . Номера, в которых все цифры различны, - это размещения из 10 элементов (10 цифр) по 6. Поэтому число благоприятствующих исходов . Искомая вероятность равна Задача 5.Между шестью фирмами (А, Б, В, Г, Д, Е), занимающимися продажей компьютерной техники, проводится жеребьевка на предмет очередности предъявления своей продукции на выставке потенциальным потребителям. Какова вероятность того, что очередь будет выстроена по порядку, т. е. А, Б, В, Г, Д, Е? Решение. Исход испытания - случайное расположение фирм в очереди. Число всех возможных исходов равно числу всех перестановок из шести элементов (фирм), т.е.Число исходов, благоприятствующих событию : m=1, если очередь выстроена по порядку. Тогда Задача 6.В компании 10 акционеров, из них трое имеют привилегированные акции. На собрание акционеров явилось 6 человек. Найти вероятность того, что среди явившихся акционеров:а) все трое акционеров с привилегированными акциями отсутствуют;б) двое присутствуют и один не явился. Решениеа) испытанием является отбор 6 человек из 10 акционеров. Число всех исходов испытания равно числу сочетаний из 10 по 6, т. е.Пусть событие  - среди шести человек нет ни одного с привилегированными акциями. Исход, благоприятствующий событию ,- отбор шести человек среди семи акционеров, не имеющих привилегированных акций. Число всех исходов, благоприятствующих событию А, будет Искомая вероятность б) пусть событие - среди шести явившихся акционеров двое с привилегированными акциями, а остальные четыре – с общими акциями. Число всех исходов,  Число способов выбора двух человек из необходимых трех  Число способов выбора оставшихся четырех акционеров среди семи с общими акциями Тогда число всех способов отбора по правилу произведения  Искомая вероятность равна

www.matem96.ru

Как находить вероятность | Подскажем

Вероятность — это величина, которая измеряет возможность воплощения в реальности того или иного события. Отрицательные и положительные основания вероятности позволяют определить её степень. Чем больше отрицательных оснований, тем меньше вероятность, и наоборот.

Вероятность как систему впервые описали Б. Паскаль, Я. Бернулли и П. Лаплас в семнадцатом веке. Учёные анализировали возможность исхода азартных игр и сформулировали вероятность как отношение положительных факторов к числу всех возможных в равной степени. Чтобы находить вероятность того или иного события, необходимо знать соответствующие формулы.

Быстрая навигация по статье

Классическое вычисление вероятности

Для вычисления вероятности используется классическая формула: Р(А)=m/n, где:

  • m-количество благоприятных исходов;
  • n- количество равновероятных исходов (при этом m<n).

Можно привести несколько примеров вычисления вероятности согласно данной формуле:

Задача 1

В коробке находится 200 карандашей красного и зелёного цвета, при этом зелёных карандашей 10 штук. Следует рассчитать вероятность того, что карандаш, вытянутый наугад, будет зелёного цвета.

Решение:

Количество равновероятных исходов в этой ситуации равно 200 (то есть, n=200). Количество исходов того, что карандаш окажется зелёным равно 10 (то есть, m=10).

Расчёт: Р(А)=10/200=0,05 (согласно формуле Р(А)=m/n). Следовательно, вероятность того, что карандаш окажется зелёным, равна 5% (результат 0,05 умножается на 100, чтобы получить значение в процентах).

Задача 2

В мешке лежат фишки красного, чёрного и белого цвета. Красных фишек — 20 штук, чёрных — 40 штук, а белых – 60 штук. Какова вероятность того, что первой попавшейся будет фишка:

А) Красного цвета; В) Чёрного цвета; С) Белого цвета

Решение:

В этом случае три возможных исхода события: фишка окажется белого, красного или чёрного цвета. Общее количество возможных равновероятных исходов равно 120. Для вычисления вероятности каждого из событий используется стандартная формула Р=m/n:

Р(А)=20/120=1/6

Р(В)=40/120=1/3

Р(С)=60/120=1/2

Задача 3

В коробке находится десять карандашей: 6 красных и 4 зелёных. Какова вероятность того, что оба вытянутых карандаша окажутся красными?

Решение:

Эта задача содержит элементы комбинаторики. В данном случае существует возможность смешения элементов и число способов вытянуть два карандаша из десяти высчитывается по формуле:

Следующим шагом будет вычисление количества случаев, когда два карандаша будут красными:

Вероятность того, что оба вытянутых карандаша окажутся красными, высчитывается по классической формуле:

Р=m/n=15/45=1/3

Свойства вероятности

У системы вероятностей есть несколько основных свойств:

  • Достоверное событие имеет величину вероятности, равную единице;
  • Вероятность невозможного события равна нулю;
  • Вероятность любого события находится в числовом промежутке между нулём и единицей;
  • Согласно теории сложения вероятностей, сумма вероятности двух несовместимых событий равна вероятности суммы этих событий.

 

Поделитесь этой статьёй с друзьями в соц. сетях:

podskajem.com